Reduced ring

In ring theory, a ring R is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0. A commutative algebra over a commutative ring is called a reduced algebra if its underlying ring is reduced.

The nilpotent elements of a commutative ring A form an ideal of A, the so-called nilradical of A; therefore a commutative ring is reduced if and only if its nilradical is reduced to zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero.

Examples and non-examples

Generalizations

Reduced rings play an elementary role in algebraic geometry, where this concept is generalized to the concept of a reduced scheme.

References